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MULTI-THREADED MULTIPLY ACCUMULATOR

Field
Embodiments of the present invention relates generally to floating point

operations, and more specifically to floating point multiply accumulators.

Background

Fast ﬂoati.}lg point mathematical operations have become an important feature
in modern electronics. Floating point units are useful in applications such as three-
dimensional graphics computations and digital signal processing (DSP). Examples
of three-dimensional graphics computation include geometry transformations and
perspective transformations. These transformations are performed when the motion
of objects is determined by calculating physical equations in response to interactive
events instead of replaying prerecorded data.

Many DSP operations, such as finite impulse response (FIR) filters, compute
Y'(a; b)), where i = 0 to n-1, and a, and b, are both single precision floating point
numbers. This type of computation typically employs floating point multiply
accumulate (FMAC) units which perform many multiplication operations and add
the resulting products to give the final result. In these types of applications, fast
FMAC units typically execute multiplies and additions in parallel without pipeline
bubbles. One example FMAC unit is described in: Nobuhiro et al., “2.44-GFLOPS
300-MHz Floating-Point Vector Processing Unit for High-Performance 3-D
Graphics Computing,” IEEE Journal of Solid State Circuits, Vol. 35, No. 7, July
2000.

For the reasons stated above, and for other reasons stated below which will
become apparent to those skilled in the art upon reading and understanding the
present specification, there is a need in the art for fast floating point multiply and

accumulate circuits.
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Brief Description of the Drawings

Figure 1 shows a multi-threaded accumulator circuit;

Figure 2 shows an integrated circuit with a multi-threaded multiply* .
accumulate circuit;

Figure 3 shows a multi-threaded floating point multiply-accumulate circuit;

Figure 4 shows a mantissa multiplier circuit;

Figure 5 shows a floating point conversion unit;

Figure 6 shows a carry-save negation circuit;

Figure 7 shows a base 32 floating point number representation;

Figure 8 s:hows an exponent path of a floating point adder;

Figure 9 shows a mantissa path of a floating point adder;

Figure 10 shows a post-normalization circuit; and

Figure 11 shows a sign detection circuit.

Description of Embodiments

In the following detailed description of the embodiments, reference is made
to the accompanying drawings which show, by way of illustration, specific
embodiments in which the invention may be practiced. In the drawings, like
numerals describe substantially similar components throughout the several views.
These embodiments are described in sufficient detail to enable those skilled in the art
to practice the invention. Other embodiments may be utilized and structural, logical,
and electrical changes may be made without departing from the scope of the present
invention. Moreover, it is to be understood that the various embodiments of the
invention, although different, are not necessarily mutually exclusive. For example, a
particular feature, structure, or characteristic described in one embodiment may be
included within other embodiments. The following detailed description is, therefore,
not to be taken in a limiting sense, and the scope of the present invention is defined
only by the appended claims, along with the full scope of equivalents to which such

claims are entitled.
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Multi-Threaded Accumulator

Figure 1 shows a multi-threaded accumulator circuit. Circuit 100 includes
input register 104, intermediate register 110, output register 114, and partial adders
108 and 112. Registers 104, 110, and 114 each receive a clock signal on node 122,
5 and register 114 receives a reset signal on node 124. Registers 104, 110, and 114
store information that is updated on each clock cycle, and register 114 presents a
“zero” output when the reset signal on node 124 is asserted.
Circuit 100 receives an interleaved input stream on node 102 and produces an
interleaved accumulated stream on output node 120. As shown in Figure 1, the
10 interleaved input :stream on node 102 includes two data streams, X, and Y}, where 1
and j are subscripts that indicate the input streams X and Y can be any length. The
data in the two input streams alternate in time, or are “interleaved.” For example, a

sample data stream on node 102 might include the sequence {X,, Y;, Xy, Yo, X, Yo}

The output data on node 120 is also interleaved. For example, as shown in Figure 1,
15 the output data on node 120 alternates between Y X; and } Y.
In some embodiments, circuit 100 receives input streams X and Y as integer

operands. In other embodiments, circuit 100 receives input streams X and Y as

floating point operands. In general, circuit 100 can be made to operate on input
streams represented in any known number format.

20 In operation, partial adder 108 receives two operands. A first operand is
provided by input register 104 on node 106, and a second operand is fedback on
output node 120. Partial adder 108 partially sums the two operands, and the results
are stored in intermediate register 110. On the next clock cycle, the contents of
intermediate register 110 are input to partial adder 112 which completes the addition

25 operation, and the results are stored output register 114. Intermediate register 110 is
a sequential element. Any type of sequential element can be utilized for intermediate
register 110. For example, in some embodiments, intermediate register 110 includes
edge-sensitive flip-flops, and in other embodiments, intermediate register 110

includes level-sensitive transparent latches.
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Each node in Figure 1 is shown as a single line for clarity. Most of these
nodes include many physical connections, or “traces.” For example, operands
generally include multiple bits to represent a number. Therefore, nodes that '
represent numbers, such as nodes 102, 106, and 120, include many physical

5 connections. This convention is used throughout this description, and nodes shown
as single lines are not necessarily intended to represent a single physical connection.

At any time during the operation of circuit 100, sums and partial sums from
the two interleaved data streams are stored in various registers. For example, during
every other clock cycle, output register 114 includes Y X, and during the other clock

10 cycles, output register 114 includes }Y,. Also for example, during every other clock
cycle, intermediate register 110 includes a partial sum of Y X, and during the other

clock cycles, intermediate register 110 includes a partial sum of }Y;. Table 1,

below, shows the contents of input register 104, intermediate register 110, and output
register 114, during the accumulation of two data streams, YX, and Y'Y, where i and

15 j take values from one to three. Each row in Table 1 represents one clock period.

Input Input Intermediate Output
Stream Register Register Register
X, Don’t Care Don’t Care 0 (Reset Asserted)
20 Y, X, Don’t Care 0 (Reset Asserted)
X, Y, X, 0 (Reset Asserted)
Y, X, Y, X,
X, Y, X, + X, (Partial Sum}) Y,
Y, X, Y, + Y, (Partial Sum) X, +X,
25 Don’t Care Y, X, + X, + X, (Partial Sum) Y, tY,
Don’t Care | Don’t Care | Y, +Y,+ Y, (Partial Sum) X, +X,+X;
Don’t Care | Don’t Care Don’t Care Y, +Y,+Y,

r
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Table 1.

Accumulator circuit 100 is a “multi-threaded” accumulator because'it v
operates on two “threads” simultaneously. One thread is represented by X, and the
5 other thread is represented by Y;. Embodiments represented by Figure 1 operate on
two threads at once. In other embodiments, three or more threads are operated on at
once. The number of threads that can be operated on simultaneously is a function of
the number of partial adders and intermediate registers included in the circuit. For
example, in embo1diments with three partial adders and two intermediate registers,

10  three threads can be accumulated simultaneously.

Multi-threaded accumulator 100 operates at a high clock speed in part
because each partial adder is faster than a full adder. By storing partial summation
results in intermediate register 110, the summation operation is separated in two

stages, where each stage is faster than a full adder. One stage is implemented by

; 15  partial adder 108, and the other stage is implemented by partial adder 112.

Multi-Threaded Multiply-Accumulator

Figure 2 shows an integrated circuit with a multi-threaded multiply-
accumulate circuit. Integrated circuit 200 includes control circuit 210, multiplexors
20 214 and 216, and multi-threaded multiply-accumulator 230. Multiplexor 214
receives inputs A, and C;, and provides an output on node 217. Multiplexor 216
receives inputs B; and D;, and provides an output on node 218. Nodes 217 and 218
provide operands to multiply-accumulator 230.
In operation, control circuit 210 provides control signals to multiplexors 214
25 and 216 on nodes 211 and 212, respectively. As a result, the operands on nodes 217
and 218 are interleaved between the sets {A, B} and {C,, D;}. Multiplier 232
receives the interleaved operands on nodes 217 and 218, multiplies them, and
produces a data stream on node 102 interleaved between the products (A B;) and

(CDy:;
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Multi-threaded accumulator circuit 100 receives the interleaved products on
node 102, and produces an interleaved output stream on node 120 that alternates
between Y AB; and ) CD,. ' :

Control circuit 210 and multiplexors 214 and 216 provide a mechanism to

5 interleave input operands for multiply-accumulator 230. In some embodiments,
control circuit 210 is a state machine, and in other embodiments, control circuit 210
is a processor. In general, control circuit 210 can be any circuit capable of
performing the interleaving. In some embodiments, control circuit 210 and
multiplexors 214’and 216 are omitted, and interleaved data streams are provided

10 directly on nodes 217 and 218. For example, in some embodiments, integrated

circuit 200 is a graphics processing integrated circuit that operates on multiple
interleaved data streams directly.

In some embodiments, multiply-accumulator 230 performs integer

multiplications and additions. For example, in some embodiments, input operands
15 on nodes 217 and 218 are signed numbers in twos-complement format. In other
embodiments, multiply-accumulator 230 performs floating point multiplications and

additions. For example, in some embodiments, input operands on nodes 217 and 218

are floating point numbers that include sign bits, exponent fields, and mantissa fields.
The remainder of this description focuses on embodiments that operate on floating
20 point numbers.
Integrated circuit 200 can be any type of integrated circuit capable of
including a multiply accumulate circuit. For example, integrated circuit 200 can be a
processor such as a microprocessor, a digital signal processor, a micro controller, or
the like. Integrated circuit 200 can also be an integrated circuit other than a
25  processor such as an application-specific integrated circuit (ASIC), a
communications device or a memory controller.
Figure 3 shows a multi-threaded floating point multiply-accumulate circuit.
Multiply-accumulate circuit 300 includes floating point multiplier 340, floating point

conversion unit 350, floating point adder 360, and post-normalization circuit 370.
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Each of the elements shown in Figure 3 is explained in further detail with reference
to figures that follow. In this section, a brief overview of the Figure 3 elements and
their operation is given to provide a context for more detailed explanations'that  *
follow.
5 In general, floating-point numbers are represented as a concatenation of a

sign bit, an exponent field, and a significand field (also referred to as the mantissa).
The Institute of Electrical and Electronic Engineers (IEEE) has published an industry
standard for floating point operations in the ANSI/IEEE Std 754-1985, IEEE
Standard for Binc?y Floating-Point Arithmetic, IEEE, New York, 1985, hereinafter

10 referred to as the “IEEE standard.” In the IEEE single precision floating-point

format, the most significant bit (integer bit) of the mantissa is not represented. The

most significant bit of the mantissa has an assumed value of 1, except for denormal

numbers, whose most significant bit of the mantissa is 0. A single precision floating

point number as specified by the IEEE standard has a 23 bit mantissa field, an eight
15  bit exponent field, and a one bit sign field. The remainder of this description is
arranged to describe multiply-accumulate operations on IEEE single precision

floating point numbers, but this is not a limitation. IEEE compliant numbers have

been chosen for illustration of various embodiments of the present invention because
of their wide-spread use, but one skilled in the art will understand that any other

20 floating point or integer format can be utilized.

Operations involving the sign bits of the floating point numbers are not
shown in Figure 3. Instead, all operations involving sign bits are presented in detail
in later figures. For all floating point numbers referred to in this description, all sign
bits, exponent fields, and mantissa fields are labeled with a capital S, E, and M,

25  respectively, with an identifying subscript. For example, floating point number A
includes sign bit S,, exponent field E,, and mantissa field M, and floating point
number B includes sign bit S,, exponent field E;, and mantissa field M,

Floating point multiplier 340 receives two floating point operands, operand A

on nodes 301 and 305, and operand B on nodes 303 and 307, and produces a floating
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point product on nodes 308 and 306. The floating point product is converted to a
different floating point representation by floating point conversion unit 350. Nodes
318 and 316 hold the converted product generated by floating point conversion unit
350.

Floating point adder 360 receives the converted product, and also receives a
previous sum on nodes 328 and 326. Floating point adder 360 then produces a
present sum on nodes 328 and 326. It should be noted that the output of floating
point adder 360 is not normalized prior to being fed back for accumulation. The lack
of a normalization circuit in the feedback path provides for a faster floating point
mutliply—accumufate circuit. Post-normalization circuit 370 receives the sum on
nodes 328 and326, and produces a result (E . Myeg)-Again, it should be noted that
the post-normalization operation is reserved for the end of the multiply-accumulate
circuit rather than immediately after both the multiplier and the adder.

Floating point multiplier 340 includes exponent path 302 and mantissa path
304. Floating point multiplier 340 also includes an exclusive-or gate (not shown) to
generate the sign of the product, S, from the signs of the operands, S, and S,, as is
well known in the art. Exponent path 302 includes an exponent summer that receives
exponents E, and E; on nodes 301 and 303 respectively, and sums them with
negative 127 to produce the exponent of the product, E, on node 308. E, and E, are
each eight bit numbers, as is E,. Negative 127 is summed with the exponent fields
because the IEEE single precision floating point format utilizes biased exponents.
Exponent path 302 can be implemented using standard adder architectures as are well
known in the art.

Mantissa path 304 receives mantissas M, and M, on nodes 305 and 307,
respectively. Mantissa path 304 includes a mantissa multiplier that multiplies
mantissas M, and M, and produces the mantissa of the product, M,, on node 306.
Mantissas M, and M, are each 23 bits in accordance with the IEEE standard, and
mantissa M, is 24 bits in carry-save format. Mantissa path 304 and carry-save

formay are described in more detail with reference to Figure 4 below.
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The exponent of the product, E,, is an eight bit number with a least
significant bit weight equal to one. For example, an E, field of 00000011 has a value
of three, because the least significant bit has a weight of one, and the next more
significant bit has a weight of two. For the purposes of this description, this
exponent format is termed “base 2,” and the product is said to be in base 2. Floating
point conversion unit 350 converts the product from base 2 to a different base. For
example, exponent path 312 is an exponent conversion unit that sets the least
significant five bits of the exponent field to zero, and truncates the exponent field to
three bits, leaving the least significant bit of the exponent of the converted product,
E,, witha weighi of 32. For example, an E, field of 011 has a value of 96, because
the least significant bit has a weight of 32, and the next more significant bit has a
weight of 64. For the purposes of this description, this exponent format is termed
“base 32,” and the converted product is said to be in base 32.

Mantissa path 314 of floating point conversion unit 350 shifts the mantissa of
the product, M,, to the left by the number of bit positions equal to the value of the
least significant five bits of the exponent of the product, E,. Mantissa path 314
presents a 57 bit mantissa in carry-save format on node 316. Floating point
conversion unit 350 does not operate on the sign bit, so the sign of the converted
product, S, is the same as the sign of the product, S,. One embodiment of floating
point conversion unit 350 is shown in more detail in Figure 5.

Floating point adder 360 includes adder exponent path 322, adder mantissa
path 324, and magnitude comparator 325. Exponent path 322 includes an exponent
accumulation stage that receives the converted product exponent, E,, on node 318,
and the feedback exponent, E;, on node 328, and produces the sum exponent E,,., on
node 328. The sum is a base 32 number in carry-save format. Exponent path 322
also produces control signals on node 323. Node 323 carries information from
exponent path 322 to mantissa path 324 to signify whether the two exponents are
equal (E,, = Ey,), whether one exponent is greater than the other (E,, > Eq, B, <Eg),

and whether one exponent is one greater than the other or two greater than the other
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sum are floating point numbers in base 32 format, an exponent that differs by a least

o= En T LEyg=E,+ L Es= E,, +2). Because the converted product and the
significant bit differs by a “weight” of thirty-two. Exponent path 322 also’receives
overflow signals and other control signals from mantissa path 324 on node 323.

5 Mantissa path 324 includes a mantissa accumulator that receives mantissa
fields M, and My, on nodes 316 and 326, respectively, and produces mantissa field
M, on node 326. Mantissa path 324 also receives control signals on node 323 from
exponent path 322, and produces overflow signals and other signals and sends them
to exponent path 322. Embodiments of adder exponent path 322 and adder mantissa

10 path 324 and the éignals therebetween are described in more detail with reference to
Figures 8 and 9, below. Magnitude comparator 325 receives mantissa fields M, and
M,, on nodes 316 and 326, respectively, and produces a magnitude compare (MC)

result on node 327. MC is used by post-normalization circuit 370 to aid in the

il determination of the sign of the result, as is further explained below with reference to
15 Figures 11 and 12.
Post-normalization circuit 370 receives the base 32 carry-save format sum

from floating point adder 360, and converts it to an IEEE single precision floating

point number. One embodiment of post-normalization circuit 370 is described in
more detail with reference to Figure 11, below.
20
Multiplier
As previously described, multiplier 340 includes an exclusive-or function for
sign bit generation, an exponent path for generating the exponent of the product, and
a mantissa path to generate a mantissa of the product in carry-save format. Figure 4
25  shows an embodiment of multiplier mantissa path 304. Mantissa path 304 includes a
plurality of compressor trees 410. Each of compressor trees 410 receives a part of
mantissa M, on node 305 and a part of a mantissa M, on node 307, and produces
carry and sum signals to form mantissa M, on node 306 in carry-save format. Carry-

save format is a redundant format wherein each bit within the number is represented
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by two physical bits, a sum bit and a carry bit. Therefore, a 24 bit number in carry-

save format is represented by 48 physical bits: 24 bits of sum, and 24 bits of carry.

Each of compressor trees 410 generates a single sum bit and a single carry bit.

Embodiments that produce a 24 bit carry-save number include 24 compressor trees
5 410.

Prior art multipliers that utilize compressor trees typically include a carry
propagate adder (CPA) after the compressors to convert the carry-save format
product into a binary product. See, for example, G. Goto, T. Sato, M. Nakajima, &
T. Sukemura, “A 54 x 54 Regularly Structured Tree Multiplier,” IEEE Journal of

10 Solid State Circufts, p. 1229, Vol. 27, No. 9, Sept., 1992. Various embodiments of

the method and apparatus of the present invention do not include a CPA after the
compressors, but instead utilize the product directly in carry-save format.
Each compressor tree 410 receives carry signals from a previous stage, and
produces carry signals for the next stage. For example, the least significant
15 compressor tree receives zeros on node 420 as carry in signals, and produces carry
signals on node 422 for the next significant stage. The most significant compressor
tree receives carry signals from the previous stage on node 424.

Each compressor tree 410 includes a plurality of 3-2 compressors and/or 4-2

compressors arranged to sum partial products generated by partial product

20 generators. For a discussion of compressors, se€ Neil H. E. Weste & Kamran
Eshragihan, “Principles of CMOS VLSI Design: A Systems Perspective,” 2" Ed.,
pp. 554-558 (Addison Wesley Publishing 1994).

Floating Point Conversion Unit

25 Figure 5 shows a floating point conversion unit. Floating point conversion
unit 350 receives the eight bit exponent field of the product, E,[7:0], where E,[7] is
the most significant bit, and E [0] is the least significant bit. The exponent of the

converted product, E_, is created by removing the least significant five bits from the

<p?
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exponent field. E, has a least significant bit equal to E [S], which has a weight of
thirty-two.

Shifter 520 receives the 24 bit product mantissa, M, in carry-save format, *
and shifts both the sum field and the carry field left by an amount equal to the value
of the least significant five bits of the product exponent, E [4:0]. If the product is
negative, multiplexer 540 selects a negated mantissa that is negated by negation
circuit 530. M,, is a 57 bit number in carry-save format, and E, is a three bit
exponent.

Figure 6 shows a carry-save negation circuit. Carry-save negation circuit 530
negates a number.1 in carry-save format. Both the sum and carry signals are inverted,
and combined with a constant of two using a three-to-two compressor. Carry-save
negation circuit 530 negates a 57 bit carry-save number. An example using a six bit
carry-save number is now presented to demonstrate the operation of three-to-two
compressors to negate a carry-save number. A six bit carry-save number with a

value of six is represented as follows:

000010 <- sum
000100 <-carry

When both the sum and carry bits above are summed, the result is 000110,
which equals six. The carry-save negation circuit inverts the sum and carry signals

and adds two as follows:

111101 <- inverted sum
111011 <- inverted carry
000010 <- constant of two
000100 <- resulting sum
111011 <- resulting carry

Attorney Docket 884.584US1 12 Client Ref. No. P12603
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Figure 7 shows base 2 and base 32 floating point number representations.
Base 2 floating point number representation 710 is the representation produced by
floating point multiplier 340 (Figure 3), and base 32 floating point number’
representation 720 is the representation produced by floating point conversion unit
350 (Figure 3). Base 2 floating point number representation 710 includes sign bit
712, eight bit exponent field 714, and twenty-four bit mantissa field 716. Base 2
floating point number representation 710 is in the IEEE standard single precision
format with an explicit integer bit added to increase the mantissa from twenty-three
bits to twenty-four bits. Base 32 floating point number 720 includes a sign bit 722, a
three bit exponeni field 724, and a fifty-seven bit mantissa field 726. Floating point
conversion unit 350 (Figure 6) converts floating point numbers in representation 710
to floating point numbers in representation 720.

Exponent 724 is equal to the most significant three bits of exponent 714. The
least significant bit of exponent 724 has a “weight” of thirty-two. In other words, a
least significant change in exponent 724 corresponds to a mantissa shift of thirty-two
bits. For this reason, floating point representation 720 is referred to as a “base 32”

floating point representation.

Floating Point Adder

Figure 8 shows an exponent path of a floating point adder. Exponent path
322 includes multiplexors 802, 804, 806, 844, 846, and 848, comparator 820,
incrementers 812 and 814, decrementer 842, registers 830, 832, 834, 835, 836, 838,
840, and 850, and logic 810. Registers 830 and 832 capture the values of Eg and E,
respectively. Because the values of B, and E_; are not changed by the action of
registers 830 and 832, the terms “E,,” and “E,,” are used to describe the input to
registers 830 and 832, as well as their contents. Incrementers 812 and 814 pre-
increment Eg and E,, to produce an incremented E, and an incremented E_,
respectively. When either exponent Ey, or E,, is incremented, the value of the

exponent is changed by thirty-two with respect to the mantissa. Accordingly,
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incrementers 812 and 814 are shown in Figure 5 with the label “+1.” Likewise,
decrementer 842 pre-decrements E,, and the resulting value is changed by thirty-two
with respect to the mantissa.

In operation, comparator 820 compares exponents Eg, and E_, and generates
logic outputs as shown in Figure 8. When Ej, is greater than E, the (Eg > E,,)
signal controls multiplexors 802 and 804 to select Eg, and the incremented Eg,
respectively. Otherwise, multiplexors 802 and 804 select E, and the incremented

E_, respectively. Multiplexor 806 selects either the exponent on node 805 or the

o>
incremented exponent on node 807 based on the overflow trigger (OFT) signal on
node 811. OFT ig asserted only if the OVF signal is asserted and the two three-bit
input exponents are either equal or differ by one. Logic 810 receives OVF from the
mantissa path and logic outputs from comparator 820, and produces the OFT signal

according to the following equation:
OFT = OVF AND ((Bg, = E,,)) OR (B, = E,, +1) OR (B, =Eg + 1))

When OFT is true, the output of multiplexor 806 is chosen as the incremented
exponent on node 807, and when OFT is false, the output of multiplexor 806 is
chosen as the greater exponent on node 805.

Multiplexor 844 selects either Eg, or the decremented Ey, based on the
overflow signal (OVFP) received from the mantissa path. Multiplexor 846 selects
between the outputs of multiplexors 806 and 844 based on the select signal (SELA)
received from the mantissa path, and multiplexor 848 selects between E, and the
output of multiplexor 846 based on the zero detect (ZDETECT) signal received from
the mantissa path. The output of multiplexor 848 is the three bit exponent of the
sum, B,

Comparator 820 compares three bit exponents and produces a plurality of
outputs that are logic functions of the inputs. Each logic output is a function of six

input bits: three bits from Ey, and three bits from E_,. This provides a very quick
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logic path. In addition to the quick comparison made in the exponent path, the
mantissa path includes constant shifters that conditionally shift mantissas by a fixed
amount. The combination of a quick exponent comparison in the exponent path and
a quick shift in the mantissa path provide for a fast floating point adder circuit. The
5 constant shifter is described in more detail below with reference to Figure 9.
Exponent path 322 is pipelined using registers 834, 835, 836, 838, 840, and
850. As a result of the pipelining, the work of the exponent path is performed in two
stages, and partial results are stored in intermediate registers. This is similar to the
two stages discussed with respect to Figure 1.
’ 10 Figure 9 silows a mantissa path of a floating point adder. Mantissa path 324
= includes constant shifters 902, 904, 906, 966, 968, and 976, adder circuits 910 and
970, and multiplexors 912, 914, and 964. Mantissa path 324 also includes registers
901, 903, 926, 930, 972, 986, 917, and 963, overflow detectors 928 and 974, logic
916, 960, and 962, leading zero anticipator (LZA) 978, comparator 980, and zero
15 detector 984. Constant shifters 902, 904, 906, 966, 968, and 976 can be used in place

of variable shifters because a change in the least significant bit of the exponent is

equal to a shift of thirty-two. This simplification saves on the amount of hardware

necessary to implement the adder, and also decreases execution time. In some
embodiments, constant shifters 902, 904, 906, 966, 968, and 976 are implemented as
20 aseries of two-input multiplexors.

Mantissa path 324 receives mantissa M, and mantissa M, at registers 901
and 903, respectively. Because the values of My, and M, are not changed by the
action of registers 901 and 903, the terms “M,,” and “M,,” are used to describe the
input to registers 901 and 903, as well as their contents. Zero detector 984 detects

25 whether M,, is all zeros, and the result is captured in register 986. The output of
register 986 is the ZDETECT signal on node 987, which is provided to exponent
path 322.
The mantissa of the sum, M,,_, can be generated in one of three data paths:

path M, path N, or path P. The various paths are labeled on the figure at the inputs to
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multiplexors 914 and 964. Path M is referred to as the “adder pat ” because the
mantissas are summed in adder 910. Path N is referred to as the “bypass path”
because the summation of adder 910 is bypassed. Path P is referred to as the “partial
normalization path” because a partial normalization is performed.

In the operation of the adder and bypass paths, constant shifter 904 shifts M,
thirty-two bit positions to the right when Ej, is greater than E,, and constant shifter
902 shifts M, thirty-two bit positions to the right when E, is greater than E,. When
E, is equal to E,, then neither mantissa is shifted in either the adder path or bypass
path.

In the addf:r path, adder circuit 910 compresses the two mantissas in carry-
save format on nodes 920 and 922 and produces the result in carry-save format on
node 924. In some embodiments, adder circuit 910 includes four-to-two compressors
to compress the two input mantissas into the result on node 924. Node 924 is
coupled to the input of register 926, which is an intermediate register similar to
intermediate register 110 (Figure 1). Shifters 902 and 904 and adder circuit 910 are
in the adder path prior to the intermediate register, and shifter 906 and multiplexors
914 and 964 are in the adder path subsequent to the intermediate register. Overflow
detector 928 detects if an overflow occurs in adder circuit 910. If an overflow is
detected, the OVF signal is asserted and constant shifter 906 shifts the mantissa
produced by adder circuit 910 thirty-two bit positions to the right. The OVF signal is
sent to exponent path 322 to conditionally select an incremented exponent, as
described above with reference to Figure 8.

In the bypass path, multiplexor 912, like adder circuit 910, receives mantissas
on nodes 920 and 922. Unlike adder circuit 910, however, multiplexor 912 selects
one of the inputs rather than adding them. Multiplexor 912 selects the mantissa that
corresponds to the larger floating point number. For example, when Eg is greater
than E
multiplexor 912 selects M_,. Multiplexor 912 drives node 913 with the selected

o multiplexor 912 selects My, Also for example, when E_, is greater than Eq,

mantissa, and node 913 is coupled to the input of register 930, which is an
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intermediate register similar to intermediate register 110 (Figure 1). Shifters 902 and
904 and multiplexor 912 are in the bypass path prior to the intermediate register, and
multiplexors 914 and 964 are in the bypass path subsequent to the intermediate
register.

Multiplexor 914 selects the adder path when the input exponents are equal or
differ by one, and selects the bypass path when the input exponents differ by more
than one. When the input exponents differ by more than one, a shift of sixty-four or
more would be needed to align the mantissas for addition, and the mantissas in the
embodiment of Figure 9 are fifty-seven bits long. Accordingly, the adder can be
bypassed, and mliltiplexor 914 selects the bypass path.

In the operation of the partial normalization path, shifter 966 shifts M, thirty-
two bit positions to the right if B, is two greater than E,,, and shifter 968 shifts My,
thirty-two bit positions to the left. The results from shifters 966 and 968 are summed
by adder 970, and the sum is stored in register 972, which is an intermediate register
similar to intermediate register 110 (Figure 1). Shifters 966 and 968 and adder
circuit 970 are in the partial normalization path prior to the intermediate register, and
shifter 976 and multiplexor 964 is in the partial normalization path subsequent to the
intermediate register. Overflow detector 974 detects if an overflow exists, and
produces the overflow signal OVFP on node 975. The OVFP signal is sent to the
exponent path, and is also sent to shifter 976 which shifts the output of register 972
thirty-two bit positions to the right if an overflow exists.

The partial normalization path provides logic that partially normalizes My,
when M,, includes a significant number of leading zeros. In this case, shifters 966
and 968 re-align M, and My, prior to summation by adder 970. The partial
normalization path is chosen by multiplexor 964 when Eg, is one or two greater than
E,, and more than thirty-one leading zeros exist in My, The existence of leading
zeros is detected by leading zero anticipator (LZA) 978 and comparator 980. If more
than thirty-one leading zeros exist in My, or if more than thirty-one leading ones

exist in My, if My, is negative, then signal LZAgt31 on node 981 will be asserted.
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For a discussion of leading zero anticipators, see Kyung T. Lee and Kevin J.
Nowka, “1 GHz Leading Zero Anticipator Using Independent Sign-Bit
Determination Logic,” 2000 IEEE Symposium on VLSI Circuits Digest of Technical
Papers, pgs 194-195.

5 The output of mantissa path 324 is a fifty-seven bit number in carry-save
format, M,,,. M,,, is chosen from paths M, N, and P, based on logic shown in

Figure 9. The logic used to choose M, from the different paths is summarized in

Table 2.
)
10 Logic (B, =E, OR (Bp>E, t20R | (Ep=Eg+1 OR

Ey,=E,+10R E,>Eqt+2) Ey=E,+2)

E,=E;+ 1) AND AND AND
LZAgt31=0 LZAgt31=0 LZAgt31 =1

Path Providing Adder Path Bypass Path Partial

M, (Path M) (Path N) Normalization
Path
(Path P)
Table 2.

15
Mantissa path 324 and exponent path 322 (Figure 8) both include
intermediate registers to provide multi-threaded capability. In the embodiments
represented by Figures 8 and 9, two threads can be operated on simultaneously. In
other embodiments, more intermediate registers are included, and more than two

20 threads can be operated on simultaneously.

Post-Normalization

Figure 10 shows a post-normalization circuit. Post-normalization circuit 370

includes sign detection circuit 1104, negation circuit 1102, multiplexor 1106, leading
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zero anticipator (LZA) 1110, carry propagate adder (CPA) 1108, shifters 1120 and
1150, and subtractors 1130 and 1140. Post-normalization circuit 370 receives the
mantissa of the sum, M, and the exponent of the sum, E,, generates the'sign of

the result, S and converts the carry-save number into IEEE standard single

result?
precision format.

M, is received by sign detection circuit 1104, negation circuit 1102, and
multiplexor 1106. Sign detection circuit 1104 receives My, and the magnitude
compare (MC) signal produced by magnitude comparator 325 (Figure 3), and
produces S, the sign of the sum. S, is fedback to magnitude comparator 325 as
S The operatiofl of sign detection circuit 1104 and magnitude comparator 3251s
described in more detail below with reference to Figure 11. Multiplexor 1106 selects
between M, and a negated version thereof based on the sign of the sum, S,,. This
assures that the resulting mantissa is unsigned. Negation circuit 1102 can bea
negation circuit such as that shown in Figure 7.

CPA 1108 receives the mantissa in carry-save format and converts it to a
binary number. Carry propagate adders are well known in the art. For an example of
a carry propagate adder, see the Goto reference cited above with reference to Figure
4. Leading zero anticipator (LZA) 1110 detects the number of leading zeros in the
mantissa, and provides that information to subtractor 1130 and shifter 1120.
Subtractor 1130 subtracts the number of leading zeros from the exponent, and shifter
1120 shifts the mantissa left to remove the leading zeros. In some embodiments,
LZA 1110 is implemented similarly to LZA 978 (Figure 9). The exponent and
mantissa are then converted to IEEE single precision format by subtractor 1140 and
shifter 1150.

Figure 11 shows a sign detection circuit and a magnitude comparator.
Magnitude comparator 325 is the same magnitude comparator shown in Figure 3. It
is shown in more detail in Figure 11 to illustrate the combined operation of
magnitude comparator 325 and sign detection circuit 1104. Magnitude comparator

325 includes subtractor1210 and multiplexer 1220. Subtractor 1210 controls
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multiplexer 1220 such that MC is equal to the sign of the larger M, and M. For
example, when M, is larger than Mg, MC is equal to S Likewise, when My, is

larger than M, MC is equal to S,. Sign detection circuit 1104 receives MC and also

cp?
receives the most significant bits of the sum and carry of M, labeled S1 and C1,

5 respectively. Sign detection circuit 1104 includes logic that generates a sign bit in
accordance with the following truth table, where “X” signifies either a 1 or a 0, and

“.” indicates an impossible case.

sI Ol MC Sign
10 : 0 0 X 0
0 1 X 1
1 0 0 0
1 0 1 1
1 1 X -
15

Magnitude comparator 325 operates in parallel with adder mantissa path 324,
so MC is available for sign detection circuit 1104 at substantially the same time as

M,,,. In this manner, the operation of sign detection circuit 1104 does not

appreciably increase the delay within the feedback loop. Magnitude comparator also
20 includes intermediate registers (not shown) to delay the result such that it matches
the delay in the rest of the adder circuit.

It is to be understood that the above description is intended to be illustrative,
and not restrictive. Many other embodiments will be apparent to those of skill in the
art upon reading and understanding the above description. The scope of the

25  invention should, therefore, be determined with reference to the appended claims,

along with the full scope of equivalents to which such claims are entitled.
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